Added solution files

This commit is contained in:
Brychan Dempsey 2021-10-21 11:32:08 +13:00
parent 72ed07cc99
commit d40ebdabd2
3 changed files with 310 additions and 0 deletions

25
ShortestTotalPath.sln Normal file
View File

@ -0,0 +1,25 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 17
VisualStudioVersion = 17.0.31808.319
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "ShortestTotalPath", "ShortestTotalPath\ShortestTotalPath.csproj", "{BC8B178D-A382-4AC9-9A96-BF1636B6D181}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Release|Any CPU = Release|Any CPU
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{BC8B178D-A382-4AC9-9A96-BF1636B6D181}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{BC8B178D-A382-4AC9-9A96-BF1636B6D181}.Debug|Any CPU.Build.0 = Debug|Any CPU
{BC8B178D-A382-4AC9-9A96-BF1636B6D181}.Release|Any CPU.ActiveCfg = Release|Any CPU
{BC8B178D-A382-4AC9-9A96-BF1636B6D181}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {22471F52-251B-4504-9154-B4FF6B414C97}
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,277 @@
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
namespace ShortestTotalPath
{
internal class Program
{
static void Main(string[] args)
{
Graph g = new();
const int V = 10;
List<Node> nodes = new();
// Use random numbers, but with a controlled seed (tests are repeatable)
Random rand = new(2);
// Create the nodes
for (int i = 0; i < V; i++)
{
Node newNode = new(i.ToString());
g.Nodes.Add(newNode);
nodes.Add(newNode);
}
// Create the links between nodes
for (int i = 0; i < V; i++)
{
for (int j = 0; j < V; j++)
{
if (i != j)
{
if (nodes[j].Children.TryGetValue(nodes[i], out double value))
{
nodes[i].Children.Add(nodes[j], value);
}
else
{
nodes[i].Children.Add(nodes[j], 0.5 + rand.NextDouble() * 10);
}
}
}
}
// Take an approximate start time
DateTime start = DateTime.Now;
Algorithm a = new Algorithm();
Node n = a.Run(nodes[0], g);
DateTime end = DateTime.Now;
Console.WriteLine((end - start).TotalSeconds.ToString("N3"));
Console.Write("Path: ");
for (int i = 0; i < n.TraversedNodes.Count; i++)
{
Console.Write(n.TraversedNodes[i].Name);
if (i == n.TraversedNodes.Count - 1)
{
Console.WriteLine();
}
else
{
Console.Write(" -> ");
}
}
Console.ReadLine();
}
class Algorithm
{
/// <summary>
/// Takes a graph, and the <paramref name="source"/> node, and returns the resulting node that contains the shortest path
/// through every node in <paramref name="g"/> (<paramref name="g"/> must be undirected)<br />
/// The resulting node contains an ordered list of traversed nodes and the total cost
/// </summary>
/// <param name="source"></param>
/// <param name="g"></param>
/// <returns></returns>
public Node Run(Node source, Graph g)
{
// Keep track of the node to return
Node shortestVisitors = null;
// Create a queue of nodes.
// As we must always select the lowest cost node (+ heuristic)
// This must be O(n) traversed every iteration
Dictionary<Node, double> queue = new();
// Add our source node to the queue
queue.Add(source, 0);
// While the queue still has nodes, expand them
while (queue.Count > 0)
{
// Pop the smallest node, including the heuristic from the queue
Node poppedNode = PopShortest(queue);
// If the node has visted nodes
if (poppedNode.TraversedNodes != null)
{
// See if the node's traversed nodes contains all nodes in the graph
bool trueForAll = true;
foreach (var item in g.Nodes)
{
if (!poppedNode.TraversedNodes.Contains(item))
{
// A node was missing, so don't bother expanding any further
trueForAll = false;
break;
}
}
if (trueForAll)
{
// The popped node traverses every node,
// Don't bother expanding any more nodes in the queue
shortestVisitors = poppedNode;
break;
}
}
// Add children to the queue
foreach (Node child in poppedNode.Children.Keys)
{
// Check if the last four traversed nodes form a pattern, and our target node is one of those two nodes
// If so, don't queue this node for further expansion, as we're stuck in a local loop until the cost exceeds
// other calculated costs
if (poppedNode.IsInPattern() && (poppedNode.TraversedNodes[^2] == child || poppedNode.TraversedNodes[^1] == child))
{
// If the node would cause us to enter a local loop, disregard it
continue;
}
// Skip the parent node, unless it would be the last node we can expand (i.e., don't do a two-node loop)
if (child != poppedNode.ParentNode || (queue.Count == 0 && poppedNode.Children.Count == 1))
{
// Create a child node that is a copy of the current child, and set the total distance to the
// current total length of n + the length to the child
double length = poppedNode.TotalTraversedLength + poppedNode.Children[child];
Node qNode = new(child, poppedNode, length);
// A admissible (never over-estimates) heuristic is largest distance to an un-traversed node from our current node.
qNode.LocalHeuristic = poppedNode.FarthestUnvisitedNodeDistance();
// Add the node to the queue
queue.Add(qNode, length);
}
}
}
return shortestVisitors;
}
/// <summary>
/// Searches the dictionary for the <see cref="Node"/> with the shortest path-length + the heuristic estimate to the end goal.
/// </summary>
/// <param name="queue"></param>
/// <returns></returns>
Node PopShortest(Dictionary<Node, double> queue)
{
Node shortest = null;
double length = double.MaxValue;
// Most application processing time is spent in this loop, although it is only O(n);
// This is because the saturated n^2 graph (every node has n connections) results in O(b^d) items in the queue
// We could reduce this to O(1), at the cost of longer insertion times, when sorting added items immediately.
// Another approach is to run simultaneous comparisons on chunks of data, i.e. break the queue into two-or-more
// sections and find the lowest of each section, then grab the overall lowest, but this requires additional
// time to establish the required threads. For graphs > rank of 10, that may be a better approach
foreach (Node n in queue.Keys)
{
// Compare Length plus heuristic to the current shortest length
if (shortest is null || n.TotalTraversedLength + n.LocalHeuristic < length)
{
// new shortest found, replace the current shortest values
shortest = n;
length = n.TotalTraversedLength;
}
}
// Remove the node from the queue
queue.Remove(shortest);
return shortest;
}
}
/// <summary>
/// A graph is just a collection of Nodes (and any helper functions)
/// As nodes are usually only read, keep them in a Set, which provides O(1) lookup time
/// (We can find a specific node nearly instantly)<br />
/// See <seealso cref="Node"/>.
/// </summary>
class Graph
{
public HashSet<Node> Nodes { get; set; } = new HashSet<Node>();
}
/// <summary>
/// A node represents a vertex in a graph.<br />
/// At a minimum, the node only requires the Children to be set (which is the nodes this node is connected to, and their cost)<br />
/// For this algorithm, we have additional requirements:<br />
/// <list type="bullet">
/// <item>
/// <description>A node must keep track of its traversed nodes, and the traversed cost</description>
/// </item>
/// <item>
/// <description>It must provide a means to store a heuristic value</description>
/// </item>
/// <item>
/// <description>Each duplicated node <b>must be</b> unique</description>
/// </item>
/// <item>
/// <description>A reference to the fundamental (i.e., non-duplicant) parent is required to do loop checks</description>
/// </item>
/// </list>
/// The heuristic function used is the distance to the farthest non-traversed node
/// </summary>
class Node
{
public string Name { get; set; }
public Node ParentNode { get; set; }
public double TotalTraversedLength { get; set; } = 0;
public double LocalHeuristic { get; set; } = 0;
public Dictionary<Node, double> Children { get; set; } = new();
public List<Node> TraversedNodes { get; set; } = new List<Node>();
/// <summary>
/// Creates a new node, based on the provided name
/// </summary>
/// <param name="name"></param>
public Node(string name)
{
Name = name;
TraversedNodes.Add(this);
}
/// <summary>
/// Create a deep-copy (excluding children) of the provided source node, using the provided cost
/// </summary>
/// <param name="source"></param>
/// <param name="parent"></param>
/// <param name="cost"></param>
public Node(Node source, Node parent, double cost)
{
ParentNode = parent;
Name = source.Name;
TotalTraversedLength = cost;
TraversedNodes = new(parent.TraversedNodes);
TraversedNodes.Add(source);
Children = source.Children;
}
/// <summary>
/// Pretty-ify the debug output
/// </summary>
/// <returns></returns>
public override string ToString()
{
return $"{Name} : {GetHashCode()}";
}
/// <summary>
/// Get the farthest distance to a node that has not been traversed (this is the minimal solution distance, and is always admissible)
/// </summary>
/// <returns></returns>
public double FarthestUnvisitedNodeDistance()
{
double max = 0;
foreach (KeyValuePair<Node, double> child in Children)
{
if (child.Value > max && !TraversedNodes.Contains(child.Key))
{
max = child.Value;
}
}
return max;
}
/// <summary>
/// Detect loop patterns, so that an affected tree is expanded no further
/// </summary>
/// <returns></returns>
public bool IsInPattern()
{
if (TraversedNodes.Count < 4)
{
return false;
}
if (TraversedNodes[^1] == TraversedNodes[^3] && TraversedNodes[^2] == TraversedNodes[^4])
{
return true;
}
else return false;
}
}
}
}

View File

@ -0,0 +1,8 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>
</Project>