using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AudioToneGenerator { class Program { static void Main(string[] args) { FileStream fs = new FileStream("F:\\testFile.wav", FileMode.Create); Stream s = GenerateWaveFormStream(50, 4800000); s.CopyTo(fs); fs.Flush(); fs.Close(); Console.WriteLine("Complete"); Console.ReadLine(); } /// /// Internal class that adds in simple write buffer support /// internal class MemoryStream_Mod : MemoryStream { public void Write(byte[] buffer) { Write(buffer, 0, buffer.Length); } } static internal byte[] GetBytes(int i) { byte[] bytes = BitConverter.GetBytes(i); if (!BitConverter.IsLittleEndian) { // We need data in little-endian format; so reverse the array Array.Reverse(bytes); } return bytes; } static internal byte[] GetBytes(uint i) { byte[] bytes = BitConverter.GetBytes(i); if (!BitConverter.IsLittleEndian) { // We need data in little-endian format; so reverse the array Array.Reverse(bytes); } return bytes; } static internal byte[] GetBytes(short i) { byte[] bytes = BitConverter.GetBytes(i); if (!BitConverter.IsLittleEndian) { Array.Reverse(bytes); } return bytes; } static internal byte[] GetBytes(Int24 i) { byte[] bytes = BitConverter.GetBytes(i); // final irrelevant byte is 0; create a new array and ignore byte[] tripleBytes; if (BitConverter.IsLittleEndian) { // Little-endian, so use the first three bytes tripleBytes = new byte[] { bytes[0], bytes[1], bytes[2] }; } else { // Big-endian, so use the last three, beginning from the end tripleBytes = new byte[] { bytes[3], bytes[2], bytes[1] }; } return tripleBytes; } /// /// Non-standard 24-bit integer. Uses the system's endianness (underlying implementation is Int32) /// internal readonly struct Int24 { private readonly int m_value; public const int MaxValue = 0x7FFFFF; public const int MinValue = -0x800000; public bool Equals(Int24 obj) { return m_value == obj.m_value; } public Int24(int i) { if (i > MaxValue || i < MinValue) { throw new ArgumentOutOfRangeException(nameof(i), i.ToString()); } m_value = i; } public static explicit operator Int24(int i) => new Int24(i); public static implicit operator int(Int24 i) => i.m_value; public override string ToString() => m_value.ToString(); } /// /// Non-standard unsigned 24-bit integer. Uses the system's endianness (underlying implementation is Int32) /// internal readonly struct UInt24 { private readonly int m_value; public const int MaxValue = 0xFFFFFF; public const int MinValue = 0x0; public bool Equals(UInt24 obj) { return m_value == obj.m_value; } public UInt24(int i) { if (i > MaxValue || i < MinValue) { throw new ArgumentOutOfRangeException(nameof(i), i.ToString()); } m_value = i; } public static explicit operator UInt24(int i) => new UInt24(i); public static implicit operator int(UInt24 i) => i.m_value; public override string ToString() => m_value.ToString(); } public static Stream GenerateWaveFormStream(int frequency, uint numberOfSamples, int sampleRate=48000, short numChannels=1, short bitsPerSample=24) { // Create a variant of the memory stream which allows shorthand writing MemoryStream_Mod ms = new MemoryStream_Mod(); // Create the file header ms.Write(Encoding.ASCII.GetBytes("RIFF")); ms.Write(GetBytes(0)); // File size in bytes ms.Write(Encoding.ASCII.GetBytes("WAVEfmt ")); // File type and format chunk ms.Write(GetBytes((int)ms.Length)); // Length of currently written bytes ms.Write(GetBytes((short)1)); // short; little-endian = 1 [= PCM data] ms.Write(GetBytes(numChannels)); // Number of channels ms.Write(GetBytes(sampleRate)); // Sample Frequency ms.Write(GetBytes((sampleRate * numChannels * bitsPerSample) / 8)); // Effective byte rate (num channels * sample rate * bitrate) / 8 ms.Write(GetBytes((short)((bitsPerSample * numChannels)/8))); // Block align ms.Write(GetBytes(bitsPerSample)); // Data block ms.Write(Encoding.ASCII.GetBytes("data")); ms.Write(GetBytes((uint)(numberOfSamples * numChannels * bitsPerSample) / 8)); // Actual sound data // Frequency == C->H->C->L->C oscillations per second; so angular velocity is 2 x Pi x frequency // Sample rate = number of times/second we sample that value // Therefore, if the sample was 1-i per second, 20 Hz would be (20 * 360)i UInt24[] channelData = new UInt24[numChannels]; double angularVelocity = 2 * Math.PI * frequency; double timeBetweenSamples = 1 / (double)sampleRate; double samplesAngular = angularVelocity / sampleRate; double normalisedFrequency = frequency / timeBetweenSamples; for (uint i = 0; i < numberOfSamples; i++) { for (int n = 0; n < numChannels; n++) { double curr = Math.Sin(samplesAngular * i); ms.Write(GetBytes((Int24)(((Int24.MaxValue-1) / 2) * curr))); } } ms.Position = 4; ms.Write(GetBytes((int)ms.Length)); ms.Position = 0; // Return the stream position to the beginning return ms; } } }