158.326 Software Construction

Tutorial 5

In this tutorial you will be implementing the Observer pattern covered in the lecture 5, using the Weather Station
case study found in chapter 2 of “Head First Design Patterns”. Below is the class diagram for this case study,
implemented using the Observer pattern.

We will implement the Observer pattern for this case study as a Windows Forms application that comprises of 4
forms. From the diagram below, WeatherData, CurrentConditionDisplay, ForecastDisplay and StatisticsDisplay
classes will be a separate Form class each. Ignore the ThirdPartyDisplay class in the diagram.

We will build this application incrementally, one display form at a time.

Z cfo‘h -lhwﬁam1

All our weather tomponents

implement. the Obsexver

§ 1 DIVES the
et :{tﬁﬁ Cawid": anie*’?aé" T berfate bo
2 biett a Lomm :
e & i'ﬂf L when it comes Eime ©
\/ wpdate the dbservers
=<interface=> observers <<interface>>
Subject =3 Observer
registerOhsenser) update()
removelbsenserd)
notifyObsaners()

WeatherData

ragistarObsenva)
ramovellbsarvar])
nofifyObsaresrs()

gelTemperalure()
gelHumnidity[)

getPressure(}
measurementzChanged])

WeatherData now .
i:?'le,m:n{;s +he Sub ch,t

'mﬂ-.—ﬁac-t-

Let's also treate an interface
for all display elements

to im?lcmzn{:. The disp'a\'r
elements iust need to
implement a display() method.

)

=<infarfaces>

DisplayElement

dlisplay)

CurrentConditinnleisplaf

updatal)
display() { f display currant
messurements }

This display element.
shows Lhe turrent
medsurements firom the

WeatherData ob ject.

StatisticsDisplay

updatel)
display]) { N display the aver-

age, min and mas measure-

ments }

This one keeps track
o-F the mi'mfﬂnfy’ma‘ﬁ
measurements and

displays them.

| ThirdPartyDisplay

update()

display() { ¥ display
something else based on
measurements

De,:;\lo?cff'
tan imficmcn{;

the Obsevver

: and Display

: 'ln'l;ﬂ‘;&bcs {0
|:-<thal1l:rl[,:.m:aml}lwla},I veate their own
updsts
displayl) { F display the dl!-?'lajl dcmthf,
forecast }

This display shows the weather
fovetast based on the barometer.

These three display elements should have a pointer to

WeatherData labeled “subjc.‘.t” too, but boy would
this diagram start o look like spaghetti i '!:'nc\f did.

Image from “Head First Design Patterns” by Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra

Exercise 1

Create a C# windows forms project. Define the 3 interfaces from the diagram. First create the WeatherData form
that looks something like the image below left, in which one can enter the temperature, humidity and pressure
values. Choose yourself what type of a user event you would like to be triggered that will read the text box values
and store them into variables in your form (floats or ints). Next, implement the interface methods in the form and

any other methods you might need.

ot WeatherData = =5 B

WeatherData Station

Temp

Humidity

Pressure

-

a5 CurrentConditionsDisplay

-

=RREN X

Current Conditions

Temp

Hurmidity

Pressure

[Register Az Observer

]

[De-Register As Observer

)

Next create the CurrentConditionsDisplay form that looks something like the form above right, whose functionality is
to display values from the WeatherData form when it is registered as an observer. Implement the interfaces’
methods and the button click events. For the Update() method in the Observer interface, use the push technique
to update the observer objects as shown in the book. That means that the Update() method will be taking the
temperature, humidity and pressure values as arguments and passing them to all the observers. Define the
constructors in both the CurrentConditionsDisplay and WeatherData forms as shown in the class as well as in the

supplementary lecture slides in order to create a multi-form application.

Once you have connected everything up and launched your application, whatever is typed into the WeatherData
form should be reflected in the CurrentConditions form when the observer form registers as an observer with the

subject, as shown in the images below.

-

ot WeatherData 3

WeatherData Station

Temp 325
Humidity B8
Pressure 1060

gt CurrentConditionsDisplay

= B &

Current Conditions

Temp 325
Humidity 88
Pressure 1050

[Register As Observer

[De-Register As Observer

Exercise 2

Extend the application by adding the ForecastDisplay form as pictured below.

f sl ForecastDisplay =[] iz-1 [asl ForecastDisplay =8 iz-1
Forecast Forecast
Expected conditions: Expected condtions: Sunshine
[RegsterAsObsever | [RegsterAsObsever |
[De-Register As Observer] [De-Register As Observer]

Implement very naive logic which sets the “Expected conditions” label as “Sunshine” if the pressure in the
WeatherData form is above 1000, otherwise as “Rain”.

Exercise 3

Extend the application further by adding the StatisticsDisplay form as pictured below.

ol StatisticsDisplay E@éj

Weather Statistics

Average Temp 26

Max Temp 34
Min Temp 10
[Register As Observer]

[De-Register As Observer]

This form will keep track of all the temperature entries during the periods when it was registered as an observer, and
will provide simple statistics such as the average, maximum and the minimum temperatures experienced.

Exercise 4

You have now seen how the Observer patterns works. There are, however, different ways of implementing it. You
have implemented the Observer pattern using the push technique, whereby it is the Subject who decides what data
to update the observers with. As an exercise, now modify your code to implement the pull technique. Start by adding
a new method to the Observer interface called UpdatePull() which unlike the Update() method, takes no
arguments. Modify your program in such a way that enables the observers to fetch the data they specifically need
from the Subject.

Exercise 5

Add another interface INotes to the three Display Elements which has one method WeatherNotes () which gives
both new and previous reading of relevant weather changes, i.e., Weather Statistics gives temperature changes only,
etc.

